
DeepRepair: A framework for error detection and correction
Project Report

Meghana Moorthy Bhat, Yogesh Chockalingam, Manjunath N S

University of Wisconsin Madison

mbhat2,ychockalinga,shettar@wisc.edu

1 PROBLEM AND MOTIVATION
Data analysis using machine learning and other inference methods

are common today in industries. The machine learning algorithms

are quite sensitive to data errors. The raw data obtained from vari-

ous external resources are often dealt with inconsistencies, integrity

constraints violation, missing values and other uncertainties which

make them unsuitable for training without cleaning. Hence, the

need for elimination of uncertainty in data has become significantly

important. As a result, there have been lots of work/efforts attempts

made in industry and academia [5, 8, 10]. The existing methodolo-

gies are found to be heavily human-dependent and very few systems

provide end-to-end solution of the data cleaning pipeline. Hence, it

remains active research area for finding better solutions minimizing

human dependency. In the past few years, deep learning (DL) has

become a major direction in machine learning [6, 14, 18, 20] and

has provided solid results for images, speech and text. By labeling

very few samples, DL can automatically construct important fea-

tures, thereby eliminating the need for manual feature engineering.

Recently, DL has also gained the attention of the database research

community [4, 16, 20]. Naturally, the question arises if DL can solve

the problem of handling inconsistencies and has this approach been

tried so far? If yes, what are the solutions proposed and what are

the tasks being addressed? How do they perform with respect to

existing non-DL solutions? Do they identify uncertainty in dataset

and resolve them with minimal human help?

In this project, we answer these questions with the goal of un-

derstanding the benefits and limitations of DL for data repairing

tasks. The figure 1 shows our end-to-end system incorporating

word embeddings in DL models for data repairs. We propose a

new framework DeepRepair - a system that automatically detects

and corrects errors in a dataset incorporating word embeddings

using deep learning models. The data repair is accomplished in

two main phases: (i) Error Detection (ii) Error correction. In the

error detection phase, we consider the classic setting where DL

model is trained on labeled data and the trained model is applied to

test data. The erroneous tuples found undergo repair as two differ-

ent tasks - imputation for missing values, correction for resolving

other uncertainties identified from the error detection phase. The

framework has a feed-in module called Attribute Classifier. This is

a pre-trained DL model from the clean dataset used to classify the

attributes.

2 BACKGROUND AND RELATEDWORK
Recently, there has beenwork on data cleaning using active learning

ActiveClean [13], data cleaning using weak supervision HoloClean

[17]. ActiveClean requires custom methods to feed-in error indices

to the model and requires labeling of sample of correct tuples. Holo-

Clean requires user to provide denial constraints to determine the

Figure 1: DeepRepair framework workflow

violations. The existing methods require significant attention of the

domain expert but we aim to reduce human effort on data cleaning

yet attain good performance results. There has also been some work

on embedding structured data using structure2vec [3]. It focuses

on embedding latent variable models into feature spaces and learn-

ing such feature spaces using discriminate information. While this

work adopts the ideas similar to graphical model inference proce-

dures, recent work by fastAI [7] focuses on using deep learning for

tabular data, in particular, the creation of embeddings for categor-

ical variables. We focus our efforts on detecting and cleaning the

erroneous cells in the structured data through embedding records.

To the best of our knowledge, there has been no study made on

applications of DL models for error detection and correction.

3 APPROACH AND DESIGN
The setup of our system takes datasets consisting of injected syn-

thetic data errors(0.5% of null values, 0.15% of misspelled words).

0.05% tuples from the dataset are labeled as error ’0’ or correct

’1’ (except for hospital). The key approach can be summarized in

following steps: (i) represent the text in the form of numerical

vector representation (using pre-trained vectors or training from

scratch) (ii) summarize the input using a neural network model (iii)

classification of the input sequences (correct and wrong labels for

error detection) (iv) fill in the missing value using semantic informa-

tion (v) rectify the misplaced values in cells using word embeddings.

3.1 Embedding Choices
We have set templates in our framework to choose between pre-

trained or local trained embeddings. The choice of word embed-

dings, such asword or attribute-level embeddings (e.g., word2vec[15])

or character-level embeddings (e.g., fastText[1]) can be selected by

the user. The pre-trained embeddings offer two distinctive advan-

tages: (1) they lead to smaller training times, and (2) they have



Figure 2: Few sample rows from the dataset

been trained over large corpora, such as Wikipedia or GoogleNews.

On the other hand, local trained embeddings have the advantage

of faster execution of test tokens due to small search space and

consumes significantly lesser memory. We train the vectors from

scratch to make the embedding space domain specific. Every tuple

is converted into a sentence separated by commas and map each

attribute value as "word" in vector space. A brief description of

embedding methods are provided below:

word2vec: It is a group of related models that are used to produce

word embeddings. These models are shallow, two-layer neural net-

works that are trained to reconstruct linguistic contexts of words.

Word2vec takes as its input a large corpus of text and produces a

vector space, typically of several hundred dimensions, with each

unique word in the corpus being assigned a corresponding vector

in the space. Word vectors are positioned in the vector space such

that words that share common contexts in the corpus are located in

close proximity to one another in the space. We use the skip-gram

architecture where the model uses the current word to predict the

surrounding window of context words. The skip-gram architec-

ture weighs nearby context words more heavily than more distant

context words. The clean dataset obtained after error detection is

used to build the word2vec model. The dataset is modelled like a

sentence, which each attribute in a tuple constituting a word. This

allows the model to learn words which occur in close proximity to

one another and thus word2vec captures the information across the

row. The figure below shows a few sample rows from the dataset

and the results obtained after training the model.

>>> closest(CHEROKEE, topN = 5)
('2569275531', 0.762696385383606),
('35960', 0.757010817527771),
('CENTRE', 0.7564683556556702),
('400 NORTHWOOD DR', 0.7488652467727661),

('CHEROKEE MEDICAL CENTER', 0.6274447441101074)

As seen above, the top predictions are the closest to the "CHERO-

KEE" cell.

FastText: It is an open-source library maintained by Facebook,

which lends itself to representing sentences with bag of words and

bag of n-grams, as well as using sub-word information, and sharing

information across classes through a hidden representation. It em-

ploys a hierarchical softmax that takes advantage of the unbalanced

distribution of the classes to speed up computation. FastText treats

every word as composed of character ngrams and generates better

word embeddings for rare words as a word with few occurrences

will have only few neighbors in word2vec whereas in FastText

(due to character ngrams), more neighbors will be present in its

vicinity. For example, Apple and Apples will be 2 different word

representations in word2vec closely spaced in the embedding space

whereas in FastText, App, Appl, Apple, ppl, pple, ple, Apples, ples are
the ngram representations which are projected in the embedding

space.

The clean dataset obtained after error detection is used to build

the fastText model. The dataset is modelled like a sentence, which

each attribute in a tuple constituting a word. This allows the model

to learn words which are syntactically similar and thus fastText

captures words which are similar to the current word. Shown below

are the results obtained after training the model.

>>> closest(BUNTERVILLE, topN = 5)
('GUNTERSVILLE', 0.9831987619400024),
('THOMASVILLE', 0.7798212766647339),
('HUNTSVILLE', 0.7334578037261963),
('RUSSELLVILLE', 0.7136012315750122),
('PRATTVILLE', 0.7130258083343506)

Since FastText uses character ngrams, it performs better for

capturing the syntactical context while word2vec perform better

for semantic analysis.

3.2 Error Detection
This is the first step of the framework DeepRepair. The labeled

training instances are fed to a 3-layered neural network. An em-

bedding layer serves as the first layer and is used to embed each

input string in the embedding space. These vectors are then passed

to a bidirectional Gated Recurrent Unit[2]. The bidirectional units

essentially connect two hidden layers of opposite directions to the

same output. A batch normalization layer[9] is added to normalize

the gradients to make the network converge faster. The final layer

produces the output prediction. The network is trained using bi-

nary cross-entropy loss, and uses the RMSProp[19] optimizer. The

trained model is run on the entire dataset to obtain the clean and

dirty datasets. Figure 3 provides the architecture of error detection

model.

3.3 Error Correction
The error correction phase in DeepRepair would perform repairs

on candidates/cells if they are: null (missing values), misspelled or

cell values shuffled with other values of the same column.

Data Imputation: Imputation is the process of replacing missing

data with substituted values. The detected errors are filtered to

obtain the tuples with one or more null valued cells using isnull()
function from Pandas (McKinney et al. [2010]). The non-null cells

in that tuple is fed to the word2vec model. The cells closer to the

missing cell in the dimensional space R have a higher probability of

providing the correct value for the missing cell when compared to

cells farther away. The attribute classifier module determines the

potential value for the missing cell with highest confidence among

the top predictions returned by the word2vec model[15].

Handling misspelled errors: The other errors detected and un-

cleaned are corrected using fastText[1]. These errors are fed to

fastText with n-character grams. The top predictions returned by

fastText are filtered by Attribute Classifier to measure the choice

2



Figure 3: Error Detection

with highest confidence. Following is the algorithm for Error cor-

rection:

Result: Imputes missing cells

procedure DataImputation(Xi )
X : set of erroneous cells

for each Xi in X do
if Xi is NULL then

relatedCells : Non-none cells in the same tuple as

Xi
T : Attribute type of Xi
conf idence : 0

for each cell in relatedCells do
predictions =

word2VecModel.mostSimilar(cell , topN=10)

for each p in predictions do
C : Confidence of prediction p

if AttributeClassifier(p) == T then
if C > conf idence then

conf idence = max(conf idence , C)

Xi = p

end
end

end
end

end
end

end procedure
Algorithm 1: Data Imputation

Result:Misspelled cells from potential error candidates

X : set of erroneous cells

errorSet ← ∅
for each Xi in X do

T : Attribute type of Xi
Y = {yi | yi set of unique tokens in column T}
if xi not in Y then

errorSet += xi
else

continue

end
end

Algorithm 2: Find misspelled cells

3.4 Attribute Classifier
As seen by the predictions returned by the word2vec and the fast-

Text models in the earlier section,the set of top predictions contain

cells across all the attributes. When we perform imputation or spell

correction, we need to fill or correct the cell with a value that is

of the same attribute as the cell. The attribute classifier serves to

filter the list of predictions and identify the right attribute valued

cell forerror correction.The attribute classifier consists of a deep

neural network and is depicted in figure 4, on the left. We obtain the

training data for each column by considering all the cell values in a

column and labeling them with the column name. This process is

repeated for all columns in the dataset. This is an auxiliary module

aiding error correction phase by providing categorical/columnar

information. It is a neural network consisting of 2 hidden layers

and a softmax layer to predict the attribute a cell value belongs to.

It uses a categorical cross-entropy loss and the Adam optimizer[11]

to train the network.

4 RESULTS AND CONTRIBUTIONS
In Table 1, we show the datasets being used in our experiments. The

datasets are picked from Kaggle Machine Learning repository[12].

The charts in Figure 3 show the performance of our models with

respect to detection and correction. Table 2 tabulates the runtime

performance of DeepRepair. This table does not record the time for

training embeddings of DeepRepair. It takes around 2mins(Hospital)-

4hrs (Census).

Table 1: Datasets used in our experiments.

Dataset Size Attributes Labeled
Tuples

Errors (# of
cells)

Hospital 1,000 17 700 301

Adult 32537 12 1626 10172

Census 93590 30 4679 50444

4.1 Analysis
We analyzed the causes behind the performance by plotting a his-

togram of the attributes the model got wrong most often for Hospi-

tal dataset. As seen in figure 6 for data imputation, three attributes,

3



Figure 4: Attribute Classifier

Table 2: DeepRepair Overall performance

Dataset Precision Recall F1
Hospital 0.87 0.68 0.76

Adult 0.63 0.41 0.51

Census 0.51 0.42 0.46

Figure 5: Performance measurements of DeepRepair

Table 3: Runtime performance in seconds

Dataset DeepRepair
Hospital 18

Adult 782

Census 8996

Figure 6: Error Analysis for Data Imputation

namely Condition, Sample and HospitalOwner contribute to most

of the errors encountered. Condition and HospitalOwner are cat-
egorical attributes and hence this makes it very difficult for the

word2vec model to uniquely associate categorical attributes with

a single tuple. Sample is an alphanumeric attribute and imputing

numerals via word2vec is particularly challenging.

Table 4 represents a few tuples which were not corrected by the

model. The main reason behind incorrect predictions were due to

ambiguity in attribute classifier’s predictions when the cell values

were repeated for two or more attributes. For example, we had

a misspelling for City named ’FAYETTE’. We also had a County

named ’FAYETTE’. The attribute classifier misclassified the predic-

tion as attribute County. We witnessed similar issues with another

instances.

Provider

Number

HospitalName City Zip Code County

Name

10045 FAYETTEMED-

ICAL CENTER

FAYETTE 35555 FAYETTE

10045 FAYETTEMED-

ICAL CENTER

FAYETTE 35555 FAYETTE

Table 4: Results: Spelling Correction

Contributions: 1. To the best of our knowledge, we are the first
to build end-to-end pipeline for data repairs using DL models. 2.

DeepRepair scales and generalizes well.

Technical Challenges: 1. Our model do not fit well on continuous

data. 2. The existing implementation do not scale for columns >32

due to the hard limit of numpy against dataframe query.

Future Work: In future, we would like to change our implemen-

tation to other engines for column scalability. We aim to improve

the performance of data cleaning by handling errors with respect

to continuous values as they account to 80% incorrect predictions

currently. We would like to explore unsupervised mechanisms to

eliminate labeling of data.

4



ACKNOWLEDGMENTS
The authors would like to thank Professor Theodoros Rekatsinas

for his tremendous patience, experience, guidance and valuable

inputs during the project.

REFERENCES
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-

riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[2] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.

CoRR abs/1412.3555 (2014). arXiv:1412.3555 http://arxiv.org/abs/1412.3555

[3] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent

Variable Models for Structured Data. In Proceedings of the 33rd International
Conference on International Conference onMachine Learning - Volume 48 (ICML’16).
JMLR.org, 2702–2711. http://dl.acm.org/citation.cfm?id=3045390.3045675

[4] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad

Ouzzani, and Nan Tang. 2017. DeepER - Deep Entity Resolution. CoRR
abs/1710.00597 (2017). arXiv:1710.00597 http://arxiv.org/abs/1710.00597

[5] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Condi-

tional Functional Dependencies for Capturing Data Inconsistencies. ACM Trans.
Database Syst. 33, 2, Article 6 (June 2008), 48 pages. https://doi.org/10.1145/

1366102.1366103

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[7] Jeremy Howard et al. 2018. fastai. https://github.com/fastai/fastai.

[8] Ihab F. Ilyas and Xu Chu. 2015. Trends in Cleaning Relational Data: Consistency

and Deduplication. Found. Trends databases 5, 4 (Oct. 2015), 281–393. https:

//doi.org/10.1561/1900000045

[9] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille,

France, 448–456. http://proceedings.mlr.press/v37/ioffe15.html

[10] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-

gler: Interactive Visual Specification of Data Transformation Scripts. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11).
ACM, New York, NY, USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

[11] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. CoRR abs/1412.6980 (2014). http://dblp.uni-trier.de/db/journals/corr/

corr1412.html#KingmaB14

[12] Ron Kohavi. 1996. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-

Tree Hybrid. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining.

[13] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Jiannan Wang, and Eu-

gene Wu. 2016. ActiveClean: An Interactive Data Cleaning Framework For

Modern Machine Learning. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16). ACM, New York, NY, USA, 2117–2120.

https://doi.org/10.1145/2882903.2899409

[14] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (27 5 2015), 436–444. https://doi.org/10.1038/nature14539

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality. In

Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’13). Curran Associates Inc., USA, 3111–3119. http:

//dl.acm.org/citation.cfm?id=2999792.2999959

[16] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM,

New York, NY, USA, 19–34. https://doi.org/10.1145/3183713.3196926

[17] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[18] Jürgen Schmidhuber. 2015. Deep Learning in Neural Networks. Neural Netw. 61,
C (Jan. 2015), 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958. http://dl.acm.org/

citation.cfm?id=2627435.2670313

[20] Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian-

Lee Tan. 2016. Database Meets Deep Learning: Challenges and Opportunities.

SIGMOD Rec. 45, 2 (Sept. 2016), 17–22. https://doi.org/10.1145/3003665.3003669

5

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dl.acm.org/citation.cfm?id=3045390.3045675
http://arxiv.org/abs/1710.00597
http://arxiv.org/abs/1710.00597
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/1366102.1366103
http://www.deeplearningbook.org
https://github.com/fastai/fastai
https://doi.org/10.1561/1900000045
https://doi.org/10.1561/1900000045
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/1978942.1979444
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
https://doi.org/10.1145/2882903.2899409
https://doi.org/10.1038/nature14539
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1016/j.neunet.2014.09.003
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.1145/3003665.3003669

	1 PROBLEM AND MOTIVATION
	2 Background and Related Work
	3 Approach and Design
	3.1 Embedding Choices
	3.2 Error Detection
	3.3 Error Correction
	3.4 Attribute Classifier

	4 Results and Contributions
	4.1 Analysis

	Acknowledgments
	References

